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ABSTRACT
There is an increasing interest in using hash codes for efficient mul-
timedia retrieval and data storage. The hash functions are learned
in such a way that the hash codes can preserve essential proper-
ties of the original space or the label information. Then the Ham-
ming distance of the hash codes can approximate the data similar-
ity. Existing works have demonstrated the success of many super-
vised hashing models. However, labeling data is time and labor
consuming, especially for scalable datasets. In order to utilize the
supervised hashing models to improve the discriminative power of
hash codes, we propose a Supervised Hashing with Pseudo Labels
(SHPL) which uses the cluster centers of the training data to gen-
erate pseudo labels, based on which the hash codes can be gen-
erated using the criteria of supervised hashing. More specifically,
we utilize linear discriminant analysis (LDA) with trace ratio cri-
terion as a showcase for hash functions learning and during the
optimization, we prove that the pseudo labels and the hash codes
can be jointly learned and iteratively updated in an unified frame-
work. The learned hash functions can harness the discriminant
power of trace ratio criterion, and thus can achieve better perfor-
mance. Experimental results on three large-scale unlabeled datasets
(i.e., SIFT1M, GIST1M, and SIFT1B) demonstrate the superior
performance of our SHPL over existing hashing methods.

Categories and Subject Descriptors
H.3.3 [Information Systems]: INFORMATION STORAGE AND
RETRIEVAL—Search process
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1. INTRODUCTION
Recently, learning-based hashing methods [10, 15, 5, 7, 11, 12]

have become the mainstream for scalable ANN due to their com-
pact binary representation and efficient Hamming distance calcu-
lation. Such approaches map data points to compact binary codes
through a hash function. Hashing methods can be categorized as
unsupervised and supervised. The unsupervised learning of the
hash functions is usually based on the criterion of preserving impor-
tant properties of the training data points. Typical approaches pre-
serve the consistency property (i.e., the similarity of binary codes
should be consistent with that of the original data points) [16, 5],
the similarity alignment property (i.e., the Hamming distance of
the binary code should approximate the Euclidean distance of the
original data points) [6], the order preserving property (i.e., the or-
der of a reference data item computed from the original space and
the Hamming space should be aligned) [9], etc. A fundamental
limitation of property-preserving hashing methods is that different
methods try to preserve varied properties according to the applica-
tions, and thus the performance may degrade when a specifically
designed hashing method is applied to another application. On the
other hand, supervised hashing is designed to preserve some label-
based similarity [7, 2, 13]. For example, Strecha et al. [13] de-
veloped a supervised hashing which maximizes the between-class
Hamming distance and minimizes the within-class Hamming dis-
tance. [7, 2] proposed learning the hash codes which can approxi-
mate the pairwise label similarity. The performance for supervised
hashing methods is usually significantly superior to unsupervised
methods. However, the supervised information is scarce, especially
for scalable datasets.

Inspired by this, in this paper, we propose a Supervised Hashing
with Pseudo Labels (SHPL) which makes use the self-generated
cluster centers of the training data as supervision information to
improve the effectiveness of the hash codes. It is worth highlighting
the following contributions:

• We propose a general framework to learn hashing code in
a supervised way to improve the effectiveness of hashing
methods by using some pseudo labels. We then prove that
the pseudo supervision information and the hash codes can
be jointly learned and iteratively updated in an unified frame-
work.

• We further integrate the pseudo labels strategy to unsuper-
vised hashing model, which can potentially improve the search
accuracy of hash codes.



• We successfully show it to work on a huge dataset SIFT1B
(1 billion data points). Experimental results on three pop-
ular datasets show superior performance compared to other
unsupervised hashing methods.

2. SUPERVISED HASHING WITH PSEUDO
LABELS

In this section, we introduce our algorithm. We first introduce
the notations which will be used in the rest of the paper.

Suppose there is a dataset X = [x1, ..., xN ] 2 RM⇥N , where
N is the number of data points and M is the dimensionality of
each xi. Their hash codes are Y = [y1, ..., yN ] 2 RL⇥N where
L is the code length for each yi. For supervised hashing methods,
different criteria are utilized to preserve the label information [13,
14, 8]. Based on these criteria to be preserved, different objective
functions are given. Without loss of generality, we utilize LDA
with trace ratio criterion (similar to LDAH [13]) as a showcase for
hash functions learning and demonstrate how it is incorporated into
our framework. Note that some other criterion like label-similarity
preserving [14, 8] can also be applied to our framework.

The loss function for LDA trace ratio based hashing method is:

`SHPL (Y ) =
tr (Sb)
tr (Sw)

, s.t. Y 2 {0, 1}N⇥L (1)

where Sw represents within-class scatter matrix, and Sb is the between-
class scatter matrix. They are defined as:

Sw =
CP

k=1

P
xi2⌦k

(yi � ck) (yi � ck)
T

Sb =
CP

k=1
nk (ck � y) (ck � y)T

(2)

where yi is the corresponding hash code for a date point xi, ⌦k

indicates the data points in the k-th class and ck is the mean of
hash codes in the k-th class. y is the mean of all hash codes Y . We
also define the total scatter matrix St as:

St = Sb + Sw =
NX

i=1

(yi � y) (yi � y)T (3)

Suppose the data has been centralized, i.e., x = 0. We denote the
pseudo labels as F , and we define a cluster centroid matrix C to
include the centroid vector of the hash codes in each class as C =
[c1, ..., cK ]. We use a linear hash function, i.e., yi = sgn

�
W

T
xi

�
.

This objective function is intractable and we follow [8, 16] to apply
the spectral relaxation trick to drop the sign functions. Then y = 0.
Thus Sb, Sw and St can be rewritten as:

Sw =
�
W

T
X � CF

T
� �

W

T
X � CF

T
�T

Sb = CF

T
FC

T

St = W

T
XX

T
W

(4)

Then the objective function becomes:

`SHPL

�
W,W

T
W = I

�
=

tr(CFTFCT )
tr

⇣
(WTX�CFT )(WTX�CFT )T

⌘

(5)

Because St = Sw +Sb, optimizing (1) is equivalent to optimize
tr(Sb)
tr(St)

. The problem is that we do not know the class labels F .

Then, the final objective function for our SHPL becomes:

`SHPL(W,F,C) =
tr(CFTFCT )

tr(WTXXTW)

s.t.

8
<

:

F 2 {0, 1}N⇥K

kfik1 = 1
W

T
W = I

(6)

where k·k1 is the l1 norm. The second constraint kfik1 = 1 re-
quires that each xi belongs to a single class.

2.1 Solution
There are three unknown variables in (6), namely W , C and F .

Using the class indicator matrix F , we can represent each cluster
centroid ck as:

ck =
1

size (
Q

(k))

X

yi2
Q

(k)

yi (7)

where
Q

(k) indicates the set of data points in class k. Then, C
can be reformulated in a matrix form:

C = W

T
XF

⇣
F

T
F

⌘�1
(8)

Then, (6) becomes:

`SHPL(W,F ) =
tr

⇣
WTXF(FTF)�1

FTXTW
⌘

tr(WTXXTW)

s.t.

8
<

:

F 2 {0, 1}N⇥K

kfik1 = 1
W

T
W = I

(9)

We utilize coordinate descent to optimize (9). We firstly fix F

and update W , and then fix update W by fixing F . They are up-
dated iteratively until convergence. The solution is illustrated in
Algorithm (1).
Update W : Given F , obviously solving problem (9) is to minimize
the trace ratio LDA w.r.t. W :

`

⇣
W,W

T
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⌘
=

tr

⇣
W

T
XF

�
F

T
F

��1
F

T
X

T
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⌘

tr (WT
XX

T
W )

(10)

which can be directly solved with the generalized eigenvalue de-
composition (GEVD) method:

XF

⇣
F

T
F

⌘�1
F

T
X

T
wl = �lXX

T
wl (11)

where �l is the l-th largest eigenvalue of the GEVD with the corre-
sponding eigenvector wl, and wl constitutes the l-th column vector
of the matrix W .

When W is fixed, tr(WT
XX

T
W ) is irrelevant to F . Thus, we

need to maximize the following problem w.r.t F :

` (F ) = tr

⇣
W

T
XF

�
F

T
F

��1
F

T
X

T
W

⌘

s.t.

⇢
F 2 {0, 1}N⇥K

kfik1 = 1

(12)

It is still difficult to solve due to the intractable constraints in (12).
Because tr(WT

XX

T
W ) is a constant now (W is fixed), max-

imizing between-class distance in problem (12) is equivalent to
minimizing within-class distance. Problem (12) is equivalent to
the following problem:

` (F ) =
��
W

T
X � CF

T
��2

F
, s.t.

⇢
F 2 {0, 1}N⇥K

kfik1 = 1
(13)



Problem (13) can be easily solved by alternating optimization, i.e.,
iteratively optimizing C when F is fixed and optimizing F when
C is fixed.
Update C: Each cluster center ck is the mean of all data points in
the class k. C can be updated using (7).
Update F : Since each data point belongs to one class, xi is as-
signed to its closest cluster center ck. Therefore, fi is a column
vector with its k-th element being 1 and others being 0.

After we get W , the hash codes for xi can be generated by
sgn(WT

xi).

Algorithm 1 Solution for the SHPL
Input: Initialized F ;
Output: F , W ;
1: repeat
2: Fix F , update W according to Eqn.(11);
3: repeat
4: Fix W and F , update C according to classical K-means,

each ck is the mean of the yi within the same class;
5: Fix W and C, update F ;
6: until convergence or max iteration is reached.
7: until convergence or max iteration is reached.
8: return F , W ;

3. PSEUDO LABELS FOR UNSUPERVISED
HASHING

The pseudo label strategy can also be integrated to unsupervised
hashing models to improve the performance of hash codes. A typ-
ical unsupervised hashing preserving global similarity can be for-
mulated as the following loss function:

` (Y ) =
P
ij

wijkyi � yjkH , s.t. Y

T
Y = I, yi 2 {0, 1}L (14)

where yi is the hash code for the data point xi, L is the hash code
length, and W is the affinity matrix [1].

Suppose we also have pseudo labels fi for each data point xi.
Suppose there are K classes and each data point belongs to a single
class. Then we can have K cluster centers. It is reasonable to
assume that data points from the same class should have similar
hash codes. Based on these clustering centers, the class label fi for
each xi can be updated as:

k

⇤
i = arg min

k2{1,...,K}
kxi � ckk22 (15)

where ck is the cluster center for xi. The problem is that we do not
have the cluster centers. Actually, by taking each bucket with the
same hash codes as a class, we can build a connection between yi

and ki as:

yi = b (ki) , ki = r (yi) (16)

where r(.) converts a binary code yi into an integer ki and b(.)
converts an integer ki to a binary code yi.

The solution is omitted due to the space limit.

4. EXPERIMENTS
We evaluate our algorithm on the task of high-dimensional ap-

proximate nearest neighbor (ANN) search. Firstly, we study the in-
fluence of the parameters in our algorithm. Then, we compare our
results with state-of-the-art algorithms on three standard datasets.

4.1 Settings
Experiments are conducted on three widely-used high-dimensional

datasets: SIFT1M [14], GIST1M [14], and SIFT1B [14]. Each
dataset comprises of disjoint one training set, one query set, and
one base database (on which the search is performed). SIFT1M
provides 105 training points, 104 query points and 106 database
points with each point being a 128-dimensional SIFT descriptor.
GIST1M provides 5⇥105 training points, 103 query points and 106

database points with each point being a 960-dimensional GIST fea-
ture. SIFT1B is composed of 108 training points, 104 query points
and as large as 109 database points. Following [10], we use the first
106 training points on the SIFT1B datasets. The whole training set
is used on SIFT1M and GIST1M.

ANN search is conducted to evaluate our proposed approaches,
and two indicators are reported, namely Recall vs. K (top-K results)
and Mean Average Precision (MAP).
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Figure 1: Parameters study with code length 32 and 64 on
SIFT1M

We compare our SHPL with other state-of-the-art hashing algo-
rithms, such as spectral hashing (SH) [16], iterative quantization
(ITQ) hashing [3] and K-means Hashing (KMH) [4]. Some other
hashing methods (e.g, minimal loss hashing (MLH) [9], PCA hash-
ing (PCAH) [14]) are not compared here because they are outper-
formed by these compared methods.

4.2 Parameters
There are several parameters, e.g., the size of the training datasets

N and the number of iteration iter, affecting the performance of
our algorithm. In this subsection, we study the performance vari-
ance with different parameters. Due to the space limit, we only
report the results on the SIFT1M dataset. The default settings for
SIFT1M are: iter = 50 and N = 105. The size of training
dataset N affects the training speed and model accuracy. We tune
N = 103, 5⇥103, 104, 5⇥104, 105, and illustrate the performance
changes in Fig. 1(a). There is an increasing trend with the rising of
N . When N reaches 104, further increasing the training number
will not improve the MAP significantly. The loss function in each
iteration is shown in Fig. 1(b). The loss function drops dramatically
in the first 20 iterations, and then keeps stable after 40 iterations.
This indicates the efficiency of our solution.

4.3 Results
Fig. 2 shows the comparisons of different unsupervised hashing

methods on the three unlabeled datasets. We have tested L=32 and
L=64. We used the codes provided by the authors to compare dif-
ferent algorithms. For KMH, the bit number of each subspace is 8
for L=32 and L = 64. Larger bit number will increase the perfor-
mance of KMH, but will cause out-of-memory for our computer.
For the other algorithms, the default settings are used. From these
figures, we have the following observations:
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Figure 2: The comparison of different unsupervised hashing methods with code length 32 and 64

• Our method consistently outperforms the other hashing meth-
ods in all datasets. In SIFT1M and SIFT1B datasets, the
improvement of SHPL over the other methods is more sig-
nificant, compared with that in GIST1M dataset. Also, the
improvements gap between SHPL and other hashing meth-
ods is larger in the case of L = 32, than that of L = 64.

• With the increase of code length, the performance of differ-
ent hashing methods is improved accordingly. More specifi-
cally, the recall improvements of KMH (20%-28%) and ITQ
(20%-25%) are generally more significant than SH (10%-
15%) on SIFT1M and SIFT1B dataset, while the improve-
ments on GIST1M dataset are more consistent.

• SH performs surprisingly well in SIFT1M and SIFT1B datasets,
but it is inferior in GIST1M dataset. KMH is competitive in
most settings, especially when the code length is 64 bits.

5. CONCLUSION
In this work, we propose a Supervised Hashing with Pseudo La-

bels (SHPL), a general framework which uses the supervised hash-
ing models to improve the effectiveness of hashing methods by the
pseudo label strategy. It is shown that SHPL has stronger discrimi-
native power and thus achieves better performance. The pseudo la-
bel strategy can also be integrated to unsupervised hashing models.
Experiments on three large-scale datasets demonstrate that SHPL
obtains superior accuracy over existing hashing methods.
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